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ABSTRACT

Data augmentation has become a standard technique in deep learning, as it has
been shown to greatly improve the generalisation abilities of models. In addition
to human-designed augmentation operations such as geometric transformations
(e.g., on images), recently some methods were proposed that generate new sam-
ples from the training data (e.g. using Mixup or GANs). In this paper, we empiri-
cally assess the effect of these kinds of data augmentation, regarding both classi-
fication accuracy and adversarial vulnerability. We find that ‘classical’ augmenta-
tion improves performance and robustness the most. However, we also find that
while GAN-based augmentation and Mixup can improve prediction, they cause
significant adversarial vulnerabilities when applied alone. Analyzing the smooth-
ness of the models’ decision boundaries, we can relate smoothness to robustness,
and find that classical augmentation results in smoother boundaries than Mixup
and GAN augmentation. Finally, using influence functions we show that, when
asked to predict on adversarial test examples, vulnerable models rely more on
augmented samples than on real ones. Taken together, our results suggest that
general-purpose data augmentations that do not take into the account the charac-
teristics of the data and the task, must be applied with care.

1 INTRODUCTION

Data augmentation is one of the fundamental building blocks of deep learning, and it has been
shown that without it, deep neural networks suffer from different problems such as lack of gener-
alisation (Perez & Wang, 2017) and adversarial vulnerability (Zhang et al., 2017). By affecting a
model’s behavior outside of the given training data, any data augmentation strategy introduces a
certain bias (Battaglia et al., 2018). Some augmentation methods incorporate inductive bias into the
model by transformations designed by domain experts, while others rely on sampling from a proxy
distribution (i.e., vicinity distribution) or a learned distribution (i.e., generative models).

In this work, we empirically analyze three classes of data augmentation in the visual domain: ‘clas-
sical’ augmentation via geometric transformations (which can be viewed as expert knowledge),
Mixup (Zhang et al., 2017), and GAN augmentation, looking at both classification performance and
adversarial robustness. We propose a theoretical formulation of data augmentation in a probabilistic
setup, which permits us to express combination of different data augmentations as a composition
of functions (a general concept that we believe will be useful beyond the current paper). Exten-
sive experiments with data augmentation methods used independently and in combination, and with
systematic adversarial attacks, reveal that only the expert-defined biases improve the model perfor-
mance if applied alone. More importantly, we observe that models with expert-defined augmenta-
tions are much more adversarially robust, compared to the other models. In contrast to the common
belief that Mixup and GAN augmentation improve both generalization and robustness, our experi-
ments suggest that this happens only when these methods are applied in combination with classical
data augmentation. To reveal the underlying reasons behind, we propose a specific definition of the
smoothness of decision boundaries and show that this property is systematically related to the ad-
versarial vulnerability of models. While we find that Mixup and GAN augmentation causes models
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to have smooth boundaries around the training data, we observe less smoothness around the unseen
test examples in such models, compared to models trained with classical data augmentation. Also,
by calculating influence functions (Koh & Liang, 2017) on the trained models, we demonstrate that
models trained with GAN augmentation rely more on GAN-augmented samples when predicting
on adversarial examples, than when predicting on real examples. All in all, these results suggest
that general-purpose data augmentation based on vicinity distributions of training data or generative
models must be used with care, and requires deeper analysis.

2 FORMALIZATION OF DATA AUGMENTATION

In the Appendix A, we formulate data augmentation in a probabilistic setup, as a random function
that produces a new observation from a given sample x in such a way that the most probable class
label remains unchanged (see Definition 2); this random function can be sampled from, to obtain
an arbitrary number of augmented vectors x̃1, . . . , x̃s. Some examples of how to construct simple
standard data augmentation functions under this definition are given in A. More complex augmen-
tation strategies can be constructed by function composition (Lemma 1 in Appendix A). Examples,
including how to formulate augmentation via Conditional GAN or Mixup, are also provided in the
Appendix A. The specific augmentation strategies that will be experimentally evaluated here are
precisely the three functions defined as Examples 4, 5, and 6 in A: a composition of horizontal flip,
random rotation and noise addition (what will be called ‘classical’ augmentation in the following);
a conditional GAN; and Mixup.

3 EMPIRICAL ANALYSIS OF DATA AUGMENTATION

Our experimental test domain is image classification, using CIFAR10 (Krizhevsky et al., 2009). The
empirical analysis of the augmentation functions defined above is structured into three parts: (1) per-
formance analysis, where we look at the effect of data augmentation on classification performance
and adversarial robustness; (2) boundary analysis, where we analyse how the decision boundary of
a model is affected by the augmentation; and (3) influence analysis, where we look at how much
a model relies on augmented training samples when predicting on the real test examples and their
adversarial counterparts.

The following subsections summarise the main points and observations. The precise details of
experimental setup and quantitative results are described in Appendix B.

3.1 PERFORMANCE ANALYSIS

3.1.1 EXPERIMENTAL SETUP

Two criteria for performance evaluation are considered: 1) classification performance, in terms of
classification accuracy on a test set; and 2) adversarial robustness. To assess the latter, we carry out
Projected Gradient Descent (PGD) attacks (Kurakin et al., 2016; Madry et al., 2017) on each trained
model. Having full access to the model, we create adversarial examples for each test example, and
compute the accuracy for the adversarial test set. These experiments are detailed in Appendix B.1.

We compare two augmentation scenarios: in the first, each data augmentation function is investi-
gated independently from the others (see Section B.1.1). In the second (Section B.1.2), combinations
of data augmentations are studied. For a more detailed explanation of our performance analysis, see
Appendix B.1.

3.1.2 SUMMARY OF RESULTS

(1) Independent Data Augmentation Functions: As can be seen in Figure 1, both GAN and Mixup
data augmentation improve test accuracy compared to non-augmented classifiers (0% augmented),
while being outperformed by classical data augmentation. Hence, all data augmentations are useful.
However, comparing GAN and Mixup with non-augmented classifiers, we observe that the adver-
sarial vulnerability increases with the amount of augmentation in the majority of the cases. This
is in contrast to models augmented with classical augmentation, which increases the robustness.
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This observation suggests that the inductive bias introduced by well-understood image transforma-
tions is more helpful, in terms of classification performance and adversarial robustness, than other
augmentation methods.

It can be additionally observed that while the classification performance in both Mixup and GAN
data augmentation does not change significantly when varying the amount of augmentation p (except
for the extreme case of p = 1 in GANs), adversarial vulnerability increases significantly with p in all
the attacks on the classifiers that used Mixup and GAN data augmentation. This difference is more
apparent in the weaker attacks (e.g., PGD 10 iterations), which suggests that using Mixup and GAN
augmentation alone increases adversarial vulnerability. With stronger attacks (PGD with 100 iter-
ations), the difference between GAN and classical augmentation shrinks, while Mixup remains the
most vulnerable method. Therefore, GAN and Mixup can be considered non-robust augmentations,
while classical augmentation can be considered a robust data augmentation.

(2) Composition of Data Augmentation Functions: We observe a different pattern in the function
composition experiments. As can be seen in Figure 4 in the Appendix, the classification perfor-
mance of Mixup and GAN data augmentation models reaches the performance of the classical data
augmentation. Mixup seems to achieve better classification performances in all cases, when com-
bined with classical data augmentation. While the performance of GAN-augmented classifiers has
been significantly improved by the composition with classic data augmentation, in the extreme case
of p = 1 the performance degradation is apparent.

Similarly to the independent experiments, classical augmentation remains the most robust classifier
in the majority of the cases. Looking at the adversarial accuracies, we can see two different patterns
for the Mixup and the GAN-augmented classifiers. The Mixup classifiers show more robustness
to weaker attacks (PGD with 10 iterations), compared to GAN-augmented classifiers. However, in
stronger attacks (PGD with 100 iterations), GAN and Mixup augmentation achieve similar results.
Overall, in the majority of cases classical augmentation achieves better robustness compared to GAN
and Mixup augmentation.

3.2 BOUNDARY ANALYSIS

3.2.1 EXPERIMENTAL SETUP

To obtain a measurable property of robustness for models that we can relate to (and that may partly
explain) the observed adversarial vulnerability, we propose the following measure of smoothness for
functions.
Definition 1 (Smoothness). Let X be a random variable on X . We define the ε-smoothness of some
function f : X → Y as:

Smoothness(f) := P (f(X) = f(x) | x ∈ ∂Bε(X)) , (1)

where ∂Bε(X) is the surface of a ball Bε(X) around X with radius ε > 0. In other words, for
a given input x and its predicted label f(x), smoothness relates to the probability that a random
neighbor from the ε-sphere of x will be assigned the same label by the model.

We now define the smoothness curve as a curve that represents the average of the smoothness values
per percentile, for a given set of samples. The higher the percentile values, the more robust the
model.

Our smoothness measure can be related to adversarial robustness, both intuitively and experimen-
tally: if the boundary around a sample is smooth, then it is less likely that the prediction of the
model can be flipped by an example in that neighborhood. We empirically show that if a model has
smoother decision boundaries around unseen test examples, this model is more adversarially robust.
Based on these observations, if the majority of samples have smooth boundaries around them, then
the model is more robust. Hence, adversarial robustness increases with smoothness.

In practice, we sample a number of points from the surface of the ε-sphere around every xi, and
calculate the ratio of sampled points that have the same class prediction as the label f(xi), where
f is the classifier model we analyse. This is our estimate of the smoothness around xi. We then
compare the distribution of smoothness measures for different models in Figure 2. The details of the
experimental setup are provided in Appendix D.
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3.2.2 SUMMARY OF EXPERIMENTAL RESULTS

Figure 2 compares the smoothness of different classifiers with different augmentation methods and
augmentation probabilities on the train and the test sets, as explained in Sections 3.2 and D.6. We
observe that, overall, the higher the augmentation rate is, the less smooth the classifier will become
around the original training samples. However, different augmentation methods result in different
amount of smoothness around test examples (see Figure 7). For example, Mixup augmentation,
which encourages a linear relationship between the training samples and the labels, results in the
smoothest boundaries around training samples, while having the least smooth boundaries around
the test examples. This observation is in line with the adversarial vulnerability of Mixup, which is
the most vulnerable among all methods. GAN augmentations have smoother boundaries around test
examples compared to Mixup, but less smooth compared to classical, which is also in agreement
with their adversarial vulnerability as reported in Figure 1. Please see Appendix C for an extended
results.

3.3 INFLUENCE ANALYSIS

3.3.1 EXPERIMENTAL SETUP

We use influence functions (Koh & Liang, 2017) to analyse the importance of normal and GAN-
augmented training data in relation to the adversarial vulnerability of the resulting classifiers. Our
influence analysis is explained in detail in Appendix B.3. We measure the influence values for GAN-
augmented training examples, as well as for normal training examples, for two sets of test examples:
the first set is the original test set, and the second set is their adversarial counterparts. Hence the
influence of GAN samples over the original test set, and over the adversarial test set can now be
compared using these influence values.

3.3.2 SUMMARY OF EXPERIMENTAL RESULTS

The results provided in Figure 3 compare classifiers that were trained with different amounts of
GAN augmentation. We look at the performance of GAN-augmented models using their influence
values on normal and GAN-augmented training data. As can be seen, all influence values for ad-
versarial examples (dotted lines) are higher than the influence values of real test examples (solid
lines). This means that the decisions of a model on adversarial examples have been influenced by
GAN-augmented examples more than the decisions on normal test examples. This shows that when
a model that used GAN augmentation wants to make a (wrong) decision on an adversarial example,
it relies on GAN-augmented training examples. However, when the same model wants to predict
on a real test example, then the GAN-augmented examples are not as important for this decision
compared to the previous case. We can additionally observe that this influence of GAN examples
increases with the amount of augmentation used in the training of the models. As the models with
a higher amount of GAN augmentation are more vulnerable, we can relate adversarial vulnerability
to the influence of the non-robust augmented data.

4 CONCLUSION

In this paper, we defined data augmentation as random functions and provided the ground for fur-
ther theoretical analysis. We empirically studied the relation between adversarial robustness and
data augmentation, as well as the relation between model performance and data augmentation. We
proposed a new measure to analyse the decision boundaries of deep neural networks, and showed
that there is a strong connection between adversarial robustness and the smoothness of boundaries
around unseen examples. Finally, using influence functions we showed how GAN-augmented mod-
els rely more on augmented data when predicting on adversarial examples. In our future work, we
will investigate robust data augmentation methods that preserve adversarial robustness in models,
while being a useful data augmentation, in which help to improve classification accuracy.
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A FORMALIZATION OF DATA AUGMENTATION (EXTENDED)

In the following we formulate data augmentation in a probabilistic setup. Let (X ,F1, P1) be a prob-
ability space with a state space X ⊆ Rn of inputs, e.g. images, and let (Y,F2, P2) be a probability
space with a state space Y ⊂ N of labels, e.g. classes 1, . . . , l. Following Vapnik (2013), an s-sized
sample is a sequence

(x1, y1), . . . , (xs, ys)

of input-label pairs which are observations of independent and identically distributed random vari-
ables on the product space (X × Y,F1 ⊗F2, P := P1 × P2).
Definition 2 (Augmentation). Let X and Y be random variables on X and Y , respectively, and R
be a real-valued Borel random vector. We call a random function AR an augmentation if

arg max
y∈Y

P (Y = y|X) = arg max
y∈Y

P (Y = y|AR ◦X). (2)

For some random variable X , the term P (·|X) := P (·|σ(X)) denotes the random variable obtained
by conditioning on the σ-algebra σ(X) generated by X .

By Definition 2, an augmentation AR is a random function taking some input x and returning some
random variable AR(x) realizing values in X . Under this framework, various augmented vectors
x̃1, . . . , x̃s ∈ X can be obtained from a single input x ∈ X by observing AR(x), i.e. by sampling
from the corresponding distribution. Some examples on how to construct simple data augmentation
functions given the definition above are provided in the next section.

Examples: Let X ⊂ Rn be a set of images of cats and dogs, and Y = {0, 1} a corresponding set of
labels.
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1. Adding a small fraction of noise to an image of some cat does not make it classified as a
dog. This noise adding can be formalized as augmentation

AN (x) = x +N (3)

for some random variable N : Ω→ [0, ε]n with small ε > 0.
2. Cropping an image x ∈ X can be modeled by zeroing a random number of the “outer”

pixels, where we assume the boarder of the image is encoded in the first and last elements
of the n-dimensional vector e.g.

AU (x) = (0, . . . , 0, xU , . . . , xn−U , 0, . . . , 0), (4)

where U is a uniformly random variable taking values on {1, . . . , n}.
3. Swapping an image x ∈ X can also be modeled by an augmentation, e.g.

AR(x) = (xn, xn−1, . . . , x2, x1), (5)

where R is a random variable.

Let us now point out a core property of augmentations which can be applied to construct new aug-
mentations as e.g. used in our experiments in Section 3.

The following Lemma follows directly from Definition 2 and the associativity of the composition.

Lemma 1. If AR1
and BR2

are augmentations then AR1
◦BR2

is also an augmentation.

Proof. The following holds:

arg max
y∈Y

{P (Y = y|X)} = arg max
y∈Y

{P (Y = y|BR2
◦X)}

= arg max
y∈Y

{P (Y = y|AR1 ◦ (BR2 ◦X))}

= arg max
y∈Y

{P (Y = y|(AR1
◦BR2

) ◦X)},

where the first two lines follow from Definition 2 and the last equality follows from associativity of
the composition.

In the next section, we provide some examples on how to construct more complex data augmentation
functions by using Lemma 1.

Examples (ctd.): Let X ⊆ Rn be a set of images, and Y = {1, . . . , l} ⊂ N a corresponding set of
labels.

4. Classical image data augmentation is often defined by domain experts who introduce sim-
ple transformations such as horizontal flip, random rotations, and noise adding. Following
Lemma 1 this can be formalized using AN , AU and AR as in Examples 1-3 above as
follows:

AN ◦AU ◦AR. (6)

5. A conditional GAN (Mirza & Osindero, 2014) can be formalized by

AR1
◦ . . . ◦ARl

=


AR1

if arg maxy∈Y P (Y = y|X) = 1

...

ARl
if arg maxy∈Y P (Y = y|X) = l

(7)

where AR1
, . . . , ARl

are class-specific augmentations.
6. Mixup data augmentation Zhang et al. (2017) transforms the data by sampling from the

vicinity distribution of the examples to enlarge the support of the data distribution. To
formalize this augmentation, Definition 2 can be extended to pairs of inputs X × X in the
usual way by using product spaces. In this way one can formalize an augmentation as a
convex combination of two different inputs x1 and x2 by

(1− U) · x1 + U · x2, (8)

where U is a uniform random variable on [0, 1].
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B EMPIRICAL ANALYSIS OF DATA AUGMENTATION (EXTENDED)

Our empirical analysis of the augmentation functions defined above is structured into three parts:
(1) performance analysis, where we look at the effect of data augmentation on classification per-
formance and adversarial robustness; (2) boundary analysis, where we analyse how the decision
boundary of a model is affected by the augmentation; and (3) influence analysis, where we look at
how much a model relies on augmented training samples when predicting on the real test examples
and their adversarial counterparts.

B.1 PERFORMANCE ANALYSIS

Our experimental test domain is image classification, using CIFAR10. Two criteria for performance
evaluation are considered: 1) classification performance, in terms of classification accuracy on a test
set; and 2) adversarial robustness. To assess the latter, we carry out Projected Gradient Descent
(PGD) (Kurakin et al., 2016; Madry et al., 2017) attacks on each trained model. Having full access
to the model, we create adversarial examples for each test example, and compute the accuracy for
the adversarial test set. Details of the attack models are provided in Appendix D.

We compare two augmentation scenarios: in the first, each data augmentation function is investi-
gated independently from the others (see Section B.1.1). In the second (Section B.1.2), combina-
tions of data augmentations are studied. More information about the training procedures is given in
Section D in the Appendix.

B.1.1 INDEPENDENT DATA AUGMENTATION FUNCTIONS

In order to analyse the effect of each data augmentation function independently, we apply classical,
Mixup, and GAN augmentation functions to the training data, independently and separately. More
specifically, we apply the augmentations as defined in Examples 4-6 of Appendix A, and additional
details about the setup in these experiments are provided in Appendix D. In each experiment, we
vary the probability of augmenting with p ∈ {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
We then report the accuracy on the test set, and the adversarial accuracy for the 4 PGD attacks across
all data augmentation functions, and all p values. Each experiment is repeated 3 times, and the mean
and standard deviation of the performance measures are reported in Figure 1.

B.1.2 COMPOSITION OF DATA AUGMENTATION FUNCTIONS

In a second set of experiments, we investigate two compositions of data augmentation functions: (1)
Mixup with classical augmentation, and (2) GAN augmentation with classical augmentation. Clas-
sical data augmentation was chosen for this combination because it achieved the best results in the
above experiments (with augmentation probability of p = 0.5, which we now use in the composi-
tion experiment). The probabilites for the Mixup and GAN augmentation are varied in the range of
{0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. For the function composition experiments, we
report the test accuracy and adversarial robustness, varying the value of augmentation probability in
each experiment. Each experiment is repeated 3 times, and the mean and standard deviation of the
performance measures are reported in Figure 4 in the Appendix.

B.2 BOUNDARY ANALYSIS

In this section we propose the following measure of smoothness for functions.
Definition 3 (Smoothness). Let X be a random variable on X . We define the ε-smoothness of some
function f : X → Y by:

Smoothness(f) := P (f(X) = f(x) | x ∈ ∂Bε(X)) , (9)
where ∂Bε(X) is the surface of a ball Bε(X) around X with radius ε > 0. In other words, for
a given input x and its predicted label f(x), smoothness computes the ratio of the samples on the
ε-sphere of x for which the model predicts the label f(x).

We now define the smoothness curve as a curve that represents the average of the smoothness values
per percentile, for a given set of samples. The higher the percentile values, the more robust the
model is.
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Our smoothness measure can be related to adversarial robustness: If the boundary around a sample
is smooth, then it is less likely that the prediction of the model can be flipped by an example in
that neighborhood. We empirically show that if a model has smoother decision boundaries around
unseen test examples, this model is more adversarially robust. Based on these observations, if the
majority of samples have smooth boundaries around them, then the model is more robust. Hence,
adversarial robustness increases with smoothness.

In practice, we sample a number of points from the surface of the ε-sphere around every xi, and
calculate the ratio of sampled points that have the same class prediction as the label f(xi), where
f is the classifier model we analyse. This is our estimate of the smoothness around xi. We then
compare the distribution of smoothness measures for different models in Figure 2. The details of the
experimental setup are provided in Appendix D.

B.3 INFLUENCE ANALYSIS

We use influence functions to analyse the importance of normal, and GAN augmented training data
in relation to adversarial vulnerability of the resulting classifiers. For a given test example, influence
functions compute an importance value for each training point that shows how much it contributed
to the prediction of that test example, by estimating the change in the loss on that test example that
would result if the training point were removed from the training set (Koh & Liang, 2017). Details
about influence functions can be found in Appendix E.

To analyse a classifier, we first compute the influence values of the training data (both real and
GAN-augmented) for a given test example. We then compute the average over the positive influence
values1 for the real, and for the GAN augmented training samples separately. We repeat this over all
test examples, and collect the average influence values for real and GAN data. Now we count how
often in the test set, the GAN augmented examples had a higher mean influence value, compared to
the mean of influence values in the real train data. This value then represents how often GAN sam-
ples were more influential compared to the real samples, over the test set. We repeat this experiment
for the adversarial version of the test set. We can now compare the influence of GAN samples over
the normal test set, and the adversarial test set. More information about the analysis with influence
functions can be found in Section D. The results provided in Figure 3 compare classifiers that were
trained with different amounts of GAN augmentation.

C EXPERIMENTAL RESULTS (EXTENDED)

C.1 PERFORMANCE ANALYSIS

In this section, we present and discuss the results of the performance analysis for the investigated
data augmentations.

C.1.1 INDEPENDENT DATA AUGMENTATION FUNCTIONS

As can be seen in Figure 1, both GAN and Mixup data augmentation improve test accuracy com-
pared to non-augmented classifiers (0% augmented), while being outperformed by classical data
augmentation. Comparing GAN and Mixup with non-augmented classifiers, we observe that the ad-
versarial vulnerability increases with the amount of augmentation in the majority of the cases. This
suggests that inductive bias introduced by well-understood image transformations is more helpful,
in terms of classification performance and adversarial robustness, than other augmentation methods.

It can be additionally observed that while the classification performance in both Mixup and GAN
data augmentation does not change significantly when varying the amount of augmentation p (except
for the extreme case of p = 1 in GANs), adversarial vulnerability increases considerably with p in
all the attacks on the classifiers that used Mixup and GAN data augmentation. This difference is
more apparent in the weaker attacks (e.g., PGD 10 iterations), which suggests that using Mixup and
GAN augmentation alone increases adversarial vulnerability. With stronger attacks (PGD with 100
iteration), the difference between GAN and classical augmentation reduces, while Mixup remains
the most vulnerable method.

1We are interested to know which training examples contribute positively to making a prediction.
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(i) Normal accuracy.

(ii) PGD accuracy with ε = 0.25 and 10 it-
erations.

(iii) PGD accuracy with ε = 0.5 and 10 iter-
ations.

(iv) PGD accuracy with ε = 0.25 and 100
iterations.

(v) PGD accuracy with ε = 0.5 and 100 it-
erations.

Figure 1: Performance Analysis: Comparison between different augmentation methods on the test
set of CIFAR10. E=ε in PGD. I=PGD iterations. NS: GAN augmentation with Non-saturating
GAN. WGP: GAN augmentation with Wasserstein GAN with Gradient penalty. MXUP: Mixup
augmentation. CLS: Classical augmentation.

A general pattern with Mixup augmentation is increasing the probability of augmentation p con-
sistently leads to lower robustness. In GAN augmented classifiers, on the other hand, the relation
between robustness and amount of augmentation differs based on the strength of the attack. In
weaker attacks it appears that classifiers with p ≥ 0.5 are becoming considerably more vulnerable
than classical augmentation. In stronger attacks however, the difference between GAN augmented
and classical augmented classifiers decreases.

C.1.2 COMPOSITION OF DATA AUGMENTATION FUNCTIONS

We observe a different pattern in the function composition experiments. As can be seen in Figure 4 in
the Appendix, the classification performance of Mixup and GAN data augmentation models reaches
the performance of the classical data augmentation. Mixup seems to achieve better classification
performances in all cases, when combined with classical data augmentation. While the performance

11
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(i) 0.05 augmentation. (ii) 0.5 augmentation (iii) 0.9 augmentation

Figure 2: Boundary Analysis: Comparison between the effect of different augmentation methods
on the smoothness of the decision boundaries of the classifier in the neighbourhood of train and test
samples.

Figure 3: Influence Analysis: Amount of test examples that were influenced more by GAN augmen-
tation, on average. Note: Some of the lines are overlapping: Norm+NS0.9, E.25I10+NS0.9 at the top
and Norm+NS0.05, E.25I10+NS0.05, Norm+WGP0.05, E.25I10+WGP0.05 at the bottom.

of GAN augmented classifiers have been significantly improved by the composition with classic data
augmentation, in the extreme case of p = 1 the performance degradation is apparent. This suggests
that although P (Y |AR1 ◦ . . . ◦ ARl

◦X) (see Definition 2 and Example 5) has been maximised in
the GAN training to match the generated samples to their conditioning labels, i.e. P (Y |AR1 ◦ . . . ◦
ARl
◦X) ≤ P (Y |X).

Similar to the independent experiments, classical augmentation remains the most robust classifier in
the majority of the cases. Looking at the adversarial accuracies, we can see two different patterns for
the Mixup augmented classifiers and GAN augmented classifiers. The Mixup augmented classifiers
show more robustness for weaker attacks (PGD with 10 iterations), compared to GAN augmented
classifiers. However, in stronger attacks (PGD with 100 iterations), GAN and Mixup augmented
classifiers achieve similar results. Over all, in the majority of the cases the classical augmentation
achieves better robustness compared to GAN and Mixup augmentation.

C.2 BOUNDARY ANALYSIS

Figure 2 compares the smoothness of different classifiers with different augmentation methods and
augmentation probabilities on the train and the test sets, as explained in Sections 3.2 and D.6.

We observe that overall the more probable a data augmentation is, the less smooth the classifier will
become around the original training samples. However, different augmentation methods result in
different amount of smoothness around test examples (see Figure 7). For example, Mixup augmen-
tation that encourages a linear relationship between the training samples and the labels, results in
the most smooth boundaries around training samples among data augmentations, while having the
least smooth boundaries around the test examples. We can see this by looking at the 10th percentile

12
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of the training data which has a smoothness very close to 1 (ε = 2); and the 10th percentile of the
testing data has a smoothness very close to 0 (Figure 7).

This observation is aligned with the adversarial vulnerability of Mixup, which is the most vulnerable
among all methods. GAN augmentations have smoother boundaries around test examples compared
to Mixup, but less smooth compared to classical; which is also in agreement with their adversarial
vulnerability as reported in Figure 1.

The detailed values of different percentiles are reported as follows: For ε = 2, the train and test sets
are reported in Table 4, Table 6 respectively. For ε = 4, the train and test sets are reported in Table 5,
Table 7 respectively.

C.3 INFLUENCE ANALYSIS

In this section, we compare the performance of GAN-augmented models using their influence values
on normal and GAN-augmented training data2. The results of influence analysis are provided in
Figure 3. As can be seen, all influence values for adversarial examples (dotted line) are higher
than the influence values of real test examples (solid lines). This means that the decisions of a
model on adversarial examples have been influenced by GAN-augmented examples more, than the
decisions on normal test examples. This shows that when a model that used GAN-augmentation
wants to make a (wrong) decision on an adversarial example, it relies on GAN-augmented training
examples. However, when the same model wants to predict on a real test example, then the GAN-
augmented examples are not as important for this decision compared to the previous case. We can
additionally observe that this influence of GAN examples increases by the amount of augmentation
used in the training of the models. As the models with higher amount of GAN augmentation are
more vulnerable, we can relate adversarial vulnerability to the influence of the non-robust augmented
data.

D EXPERIMENTAL SETUP

All experiments have been implemented in python using pytorch lib (Paszke et al., 2019). For
logging the experiments and controlling hyperparameters and randomness, sacred lib (Greff
et al., 2017) is used. For analysing the results, incense lib (Busche, 2019) was used to fetch
the results from the sacred lib database.

D.1 IMAGE CLASSIFICATION

Image classification experiments are carried out on CIFAR10 (Krizhevsky et al., 2009) using a
ResNet50 (He et al., 2016). ResNet was trained using SGD and weight decay penalty of coeffi-
cient 5e − 4. Each classifier was trained for 200 epochs and learning rate schedule was used with
initial value of 0.1, which was reduced twice by a factor of 10 every 80 epochs. This resulted in the
best standard accuracy of 94.92% on the test set using classical data augmentation with probability
0.5. Our ResNet50 model achieves 96.01% accuracy on the test set using a composition of classi-
cal data augmentation with probability 0.5, and Mixup data augmentation with probability 1. (see
Table 3).

D.2 ATTACK MODELS

We carry out 4 different untargeted PGD attacks with l2 norm. The parameters of these 4 attacks are
provided in Table 1. The attacks are applied using the robustness library (Engstrom et al., 2019).

D.3 CLASSICAL DATA AUGMENTATION

For classic data augmentation, cropping with a random amount, horizontal-flipping, changing the
brightness, contrast and saturation of an image by a random amount, rotation of an image by a
random amount were applied with the probability p as detailed in Appendix B.

2In this work, we only provide influence analysis for GAN-augmentations due to computational limits.
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Iterations norm
ε = 0.25 10 100 l2
ε = 0.5 10 100 l2

Table 1: PGD attack parameters used in the experiments.

WGP NS
FID 20.11 18.30

Table 2: FID for WGP and NS GANs on
CIFAR10.

CLS0.5 CLS0.5+MXUP1.0
Acc(%) 94.92 96.01

Table 3: ResNet50 test accuracy on
CIFAR10.

D.4 MIXUP DATA AUGMENTATION

For Mixup augmentation, the parameter of the Beta distribution α was set to 1, as recommended
in (Zhang et al., 2017).

D.5 GAN DATA AUGMENTATION

For GAN augmentation, two GAN models namely Non-saturating (NS) GAN (Goodfellow et al.,
2014) and a Wasserstein GAN with Gradient penalty (WGP) (Gulrajani et al., 2017) have been
trained to their convergence. Both GANs are designed to be label-conditional, capable of generating
samples that match the condition label. We evaluated these models with Fréchet Inception Distance
(FID) (Heusel et al., 2017), which showed both achieved near state-of-the-art FIDs on CIFAR10 (see
Table 2). Random generated samples from both GANs can be found in Figure 9 in the Appendix.
Each GAN model was sampled to generate 50k samples, and was conditioned on the training labels
of CIFAR10.

D.6 BOUNDARY EXAMPLES

We analysis 12 different classifiers with two values r = 2, 4 of r controlling the radius of the r-
sphere as explained in Section 3.2. The classifiers training data are augmented using Wasserstein
GAN, Non-saturating GAN, classical augmentations or Mixup augmentation. The probability of
applying the augmentation is one of 0.05,0.5,0.9. As a result, we get 12 classifiers using 1 out of
4 possible augmentation methods and 1 out of 3 possible augmentation probability. We study the
smoothness of these classifiers using spheres with radius r = 2 or r = 4 as explained in Section 3.2.
In practice, we sample 1000 points from the r-sphere around data samples from the train or test set.
We use random 10000 data sample from each of the sets to study the smoothness with respect to a
classifier. We plot every fifth percentile for each classifier, r-sphere and data set. We plot the mean
and the standard deviation of percentiles for the repeated experiments in Figures 2, 7 and 8 and
report them in Tables 4, 6, 5 and 7.

D.7 INFLUENCE FUNCTIONS

For the influence analysis 6 different classifiers, only augmented with GAN generated data, have
been analysed. The data has been generated using both GANs (NS and WGP), using low (p = 0.05),
medium (p = 0.5) and high (p = 0.9) amount of data augmentation.

In each run we analysed the 50 same test examples and their adversarial counterparts. The adversar-
ial examples have been generated for each trained classifier separately, using 10 iterations of PGD,
with ε = 0.25.

For computing the influence functions a PyTorch implementation3 has been used. Since influence
functions require the computation of implicit Hessian-vector products, which is, although being

3https://github.com/expectopatronum/pytorch_influence_functions/commit/
ecce2d27e3d46b3125bb3dd963beebd7a5407959
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more efficient than explicitly computing the inverse of the Hessian, still very time consuming (Koh
& Liang, 2017).

In order to save computation time, preliminary experiments were conducted to determine reasonable
values for the parameter recursion depth and the percentage of training samples used, which
we called trainset percentage. Both parameters have been varied in separate experiments
(recursion depth ∈ {1, 5, 10, 50} and trainset percentage ∈ {10, 25, 50, 100}) and the results did
not look significantly different. Due to computational limitations and the size of our classifiers it
was not possible to use r averaging > 1. According to Koh & Liang (2017) this leads to noisier
results but the most influential points can still be identified. One run with the minimum parameters
(recursion depth=1, r averaging=1, trainset percentage=10) takes 1 hour on an
RTX 2080 Ti for analysing 10 test examples.

E MOTIVATING INFLUENCE FUNCTIONS

In this work we investigated the impact of different augmentation methods on classification perfor-
mance and adversarial vulnerability. To get a better understanding of why and how data augmenta-
tion affected both, we wanted to have a closer look at the learned classifier in terms of the training
data. In order to obtain insights into the training data we are interested in the change of the models
parameters if we did not have a specific training point. Due to the high number of training sam-
ples and model parameters leave-one-out retraining in this scenario is infeasible. With the use of
influence functions – originally a technique from robust statistics (Cook (1977), Cook & Weisberg
(1980), Cook & Weisberg (1982)) – we can efficiently approximate this parameter change Koh &
Liang (2017).

Influence functions estimate how a model’s prediction would change if a training point z was re-
moved by upweighting it slightly by some ε.

Koh & Liang (2017) define

Iup,loss(z, ztest) = −∇θL(ztest, θ̂)
>H−1

θ̂
∇θL(z, θ̂) (10)

as the influence of upweighting training point z on the loss of test point ztest. The authors showed
that influence functions can be used for a wide variety of model analysis, e.g. for debugging domain
mismatch and fixing mislabeled examples (Koh & Liang, 2017). Therefore we believe that they are
a suitable tool for analysing GAN augmentation in the context of adversarial vulnerability.

F ADDITIONAL RESULTS
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(i) Normal accuracy.

(ii) PGD accuracy with ε = 0.25 and 10 it-
erations.

(iii) PGD accuracy with ε = 0.5 and 10 iter-
ations.

(iv) PGD accuracy with ε = 0.25 and 100
iterations.

(v) PGD accuracy with ε = 0.5 and 100 it-
erations.

Figure 4: Comparison between different augmentation methods on the test set of CIFAR10, when
classic data augmentation was additionally applied with probability of 0.5 to all methods. E=ε in
PGD. I=PGD iterations. NS: GAN augmentation with Non-saturating GAN. WGP: GAN augmen-
tation with Wasserstein GAN with Gradient penalty. MXUP: Mixup augmentation. CLS: Classical
augmentation.
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(i) Normal accuracy.

(ii) PGD accuracy with ε = 0.25 and 10 it-
erations.

(iii) PGD accuracy with ε = 0.5 and 10 iter-
ations.

(iv) PGD accuracy with ε = 0.25 and 100
iterations.

(v) PGD accuracy with ε = 0.5 and 100 it-
erations.

Figure 5: Comparison between GANs (NS vs WGP) for GAN augmentation on. E=ε in PGD.
I=PGD iterations. NS: GAN augmentation with Non-saturating GAN. WGP: GAN augmentation
with Wasserstein GAN with Gradient penalty.
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(i) Normal accuracy.

(ii) PGD accuracy with ε = 0.25 and 10 it-
erations.

(iii) PGD accuracy with ε = 0.5 and 10 iter-
ations.

(iv) PGD accuracy with ε = 0.25 and 100
iterations.

(v) PGD accuracy with ε = 0.5 and 100 it-
erations.

Figure 6: Comparison between different GANs (NS vs WGP) for GAN augmentation on CIFAR10
dataset, when classic data augmentation was additionally applied with probability of 0.5 to all meth-
ods. E=ε in PGD. I=PGD iterations. NS: GAN augmentation with Non-saturating GAN. WGP:
GAN augmentation with Wasserstein GAN with Gradient penalty. CLS: Classical augmentation.
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Figure 7: Comparing the smoothness of classifiers trained using different data augmentation meth-
ods, on the train and the test sets, data augmentation is applied with probabilities 0.05,0.5,0.9. NS:
GAN augmentation with Non-saturating GAN. WGP: GAN augmentation with Wasserstein GAN
with Gradient penalty. MXUP: Mixup augmentation. CLS: Classical augmentation as explained in
Section D.6. Using ε-sphere with ε = 2 as explained in Section 3.2.

aug. prob. mean 10th percentile 25th percentile median 75th percentile
NS 0.05 0.97 0.97 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
NS 0.5 0.97 0.94 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
NS 0.9 0.92 0.74 ± 0.10 0.98 ± 0.02 1.00 ± 0.00 1.00 ± 0.00
WGP 0.05 0.98 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
WGP 0.5 0.95 0.90 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
WGP 0.9 0.94 0.83 ± 0.05 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00
MXUP 0.05 0.98 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
MXUP 0.5 0.99 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
MXUP 0.9 0.99 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
CLS 0.05 0.98 0.98 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
CLS 0.5 0.93 0.76 ± 0.03 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
CLS 0.9 0.89 0.54 ± 0.03 0.95 ± 0.01 1.00 ± 0.00 1.00 ± 0.00

Table 4: Smoothness over the train set for different classifiers trained with different augmentation
methods. Using ε-sphere with ε = 2 as explained in Section 3.2. NS: GAN augmentation with Non-
saturating GAN. WGP: GAN augmentation with Wasserstein GAN with Gradient penalty. MXUP:
Mixup augmentation. CLS: Classical augmentation as explained in Section D.6.
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(i) Test set ε = 2 . (ii) Train set ε = 2 .

(iii) Test set ε = 4 . (iv) Train set ε = 4 .

Figure 8: Comparing the smoothness of different classifiers trained using different data augmen-
tation methods, on the both train and test set, data augmentation is applied with probabilities
0.05,0.5,0.9. NS: GAN augmentation with Non-saturating GAN. WGP: GAN augmentation with
Wasserstein GAN with Gradient penalty. MXUP: Mixup augmentation. CLS: Classical augmenta-
tion as explained in Section D.6. Using ε-sphere with ε = 2, 4 as explained in Section 3.2.

aug. prob. mean 10th percentile 25th percentile median 75th percentile
NS 0.05 0.75 0.14 ± 0.05 0.56 ± 0.10 0.94 ± 0.03 1.00 ± 0.00
NS 0.5 0.73 0.10 ± 0.00 0.49 ± 0.00 0.92 ± 0.01 1.00 ± 0.00
NS 0.9 0.64 0.04 ± 0.03 0.27 ± 0.12 0.79 ± 0.09 0.99 ± 0.00
WGP 0.05 0.77 0.14 ± 0.00 0.60 ± 0.00 0.96 ± 0.00 1.00 ± 0.00
WGP 0.5 0.67 0.05 ± 0.00 0.36 ± 0.00 0.84 ± 0.01 1.00 ± 0.00
WGP 0.9 0.69 0.08 ± 0.03 0.41 ± 0.08 0.86 ± 0.05 0.99 ± 0.00
MXUP 0.05 0.79 0.22 ± 0.03 0.67 ± 0.04 0.96 ± 0.01 1.00 ± 0.00
MXUP 0.5 0.78 0.29 ± 0.03 0.65 ± 0.03 0.93 ± 0.01 1.00 ± 0.00
MXUP 0.9 0.82 0.39 ± 0.09 0.74 ± 0.06 0.96 ± 0.02 1.00 ± 0.00
CLS 0.05 0.74 0.12 ± 0.08 0.52 ± 0.17 0.93 ± 0.05 1.00 ± 0.00
CLS 0.5 0.58 0.01 ± 0.00 0.14 ± 0.02 0.69 ± 0.04 0.99 ± 0.00
CLS 0.9 0.56 0.01 ± 0.00 0.11 ± 0.01 0.63 ± 0.01 0.98 ± 0.00

Table 5: Smoothness over the train set for different classifiers trained with different augmentation
methods. Using ε-sphere with ε = 4 as explained in Section 3.2. NS: GAN augmentation with Non-
saturating GAN. WGP: GAN augmentation with Wasserstein GAN with Gradient penalty. MXUP:
Mixup augmentation. CLS: Classical augmentation as explained in Section D.6.
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augmentation probabiltiy mean 10th percentile 25th percentile median 75th percentile
NS 0.05 0.86 0.40 ± 0.04 0.89 ± 0.03 1.00 ± 0.00 1.00 ± 0.00
NS 0.5 0.85 0.36 ± 0.01 0.87 ± 0.01 1.00 ± 0.00 1.00 ± 0.00
NS 0.9 0.83 0.28 ± 0.09 0.79 ± 0.06 1.00 ± 0.00 1.00 ± 0.00
WGP 0.05 0.88 0.47 ± 0.00 0.92 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
WGP 0.5 0.84 0.31 ± 0.02 0.83 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
WGP 0.9 0.85 0.37 ± 0.05 0.83 ± 0.03 1.00 ± 0.00 1.00 ± 0.00
MXUP 0.05 0.86 0.35 ± 0.01 0.88 ± 0.01 1.00 ± 0.00 1.00 ± 0.00
MXUP 0.5 0.83 0.28 ± 0.02 0.79 ± 0.01 1.00 ± 0.00 1.00 ± 0.00
MXUP 0.9 0.82 0.27 ± 0.02 0.74 ± 0.02 0.99 ± 0.00 1.00 ± 0.00
CLS 0.05 0.89 0.53 ± 0.07 0.96 ± 0.02 1.00 ± 0.00 1.00 ± 0.00
CLS 0.5 0.86 0.36 ± 0.02 0.91 ± 0.01 1.00 ± 0.00 1.00 ± 0.00
CLS 0.9 0.85 0.32 ± 0.04 0.89 ± 0.01 1.00 ± 0.00 1.00 ± 0.00

Table 6: Smoothness over the test set for different classifiers trained with different augmentation
methods. Using ε-sphere with ε = 2 as explained in Section 3.2. NS: GAN augmentation with Non-
saturating GAN. WGP: GAN augmentation with Wasserstein GAN with Gradient penalty. MXUP:
Mixup augmentation. CLS: Classical augmentation as explained in Section D.6.

augmentation probability mean 10th percentile 25th percentile median 75th percentile
NS 0.05 0.65 0.03 ± 0.01 0.28 ± 0.05 0.84 ± 0.04 1.00 ± 0.00
NS 0.5 0.63 0.02 ± 0.00 0.23 ± 0.01 0.80 ± 0.01 1.00 ± 0.00
NS 0.9 0.58 0.01 ± 0.01 0.15 ± 0.07 0.67 ± 0.11 0.99 ± 0.01
WGP 0.05 0.67 0.03 ± 0.00 0.31 ± 0.00 0.87 ± 0.00 1.00 ± 0.00
WGP 0.5 0.59 0.01 ± 0.00 0.17 ± 0.00 0.72 ± 0.01 0.99 ± 0.00
WGP 0.9 0.63 0.03 ± 0.01 0.24 ± 0.05 0.78 ± 0.05 0.99 ± 0.01
MXUP 0.05 0.65 0.03 ± 0.00 0.27 ± 0.02 0.84 ± 0.02 1.00 ± 0.00
MXUP 0.5 0.61 0.03 ± 0.00 0.23 ± 0.02 0.73 ± 0.02 0.99 ± 0.00
MXUP 0.9 0.64 0.05 ± 0.02 0.28 ± 0.04 0.78 ± 0.04 0.99 ± 0.00
CLS 0.05 0.65 0.02 ± 0.02 0.28 ± 0.11 0.85 ± 0.08 1.00 ± 0.00
CLS 0.5 0.54 0.00 ± 0.00 0.09 ± 0.01 0.60 ± 0.04 0.98 ± 0.01
CLS 0.9 0.53 0.00 ± 0.00 0.08 ± 0.01 0.58 ± 0.01 0.97 ± 0.00

Table 7: Smoothness over the test set for different classifiers trained with different augmentation
methods. Using ε-sphere with ε = 4 as explained in Section 3.2. NS: GAN augmentation with Non-
saturating GAN. WGP: GAN augmentation with Wasserstein GAN with Gradient penalty. MXUP:
Mixup augmentation. CLS: Classical augmentation as explained in Section D.6.

(i) NS GAN. (ii) WGP GAN.

Figure 9: Random generated samples from the NS and WGP GANs, conditioned on different labels.
The conditioning labels in each row are fixed.
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